日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Avdievich, N., Pan, J., Baehring, J., Spencer, D., & Hetherington, H. (2009). Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays. Magnetic Resonance in Medicine, 62(1), 17-25. doi:10.1002/mrm.21970.


引用: https://hdl.handle.net/21.11116/0000-0002-BF8C-A
要旨
Recent advances in magnet technology have enabled the construction of ultrahigh‐field magnets (7T and higher) that can accommodate the human head and body. Despite the intrinsic advantages of performing spectroscopic imaging at 7T, increased signal‐to‐noise ratio (SNR), and spectral resolution, few studies have been reported to date. This limitation is largely due to increased power deposition and B1 inhomogeneity. To overcome these limitations, we used an 8‐channel transceiver array with a short TE (15 ms) spectroscopic imaging sequence. Utilizing phase and amplitude mapping and optimization schemes, the 8‐element transceiver array provided both improved efficiency (17% less power for equivalent peak B1) and homogeneity (SD(B1) = ±10% versus ±22%) in comparison to a transverse electromagnetic (TEM) volume coil. To minimize the echo time to measure J‐modulating compounds such as glutamate, we developed a short TE sequence utilizing a single‐slice selective excitation pulse followed by a broadband semiselective refocusing pulse. Extracerebral lipid resonances were suppressed with an inversion recovery pulse and delay. The short TE sequence enabled visualization of a variety of resonances, including glutamate, in both a control subject and a patient with a Grade II oligodendroglioma.