English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Low Temperature Formation of Ruddlesden–Popper-Type Layered La2CoO4±δ Perovskite Monitored via In Situ X-ray Powder Diffraction

MPS-Authors
/persons/resource/persons216542

Ortatatlı,  Şeyma
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons140222

Ternieden,  Jan
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59100

Weidenthaler,  Claudia
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ortatatlı, Ş., Ternieden, J., & Weidenthaler, C. (2018). Low Temperature Formation of Ruddlesden–Popper-Type Layered La2CoO4±δ Perovskite Monitored via In Situ X-ray Powder Diffraction. European Journal of Inorganic Chemistry, 2018(48), 5238-5245. doi:10.1002/ejic.201801162.


Cite as: http://hdl.handle.net/21.11116/0000-0002-CA05-5
Abstract
In this contribution low temperature formation of Ruddlesden–Popper (RP)-type layered La2CoO4±δ perovskite was optimized via in situ X-ray powder diffraction (XRPD). Starting from LaCoO3 a stoichiometric transformation to La2CoO4±δ and CoO can be achieved by controlled reduction with H2. The challenge of this reaction is the use of appropriate amounts of H2 in a defined temperature region. If the amount of H2 is too high, complete reduction of the perovskite occurs. If temperatures are not appropriate, intermediate phases seem to hinder the transformation La2CoO4±δ or lead to a complete decomposition to simple oxides. Based on in situ XRPD experiments, the temperature window and required amount of H2 for the transformation of LaCoO3 to La2CoO4±δ were determined. Systematic experiments reveal that 650 °C is the optimal temperature for the complete transformation of LaCoO3 into La2CoO4±δ and CoO/Co0. The information was then transferred to realize bulk synthesis of La2CoO4±δ at 650 °C in a tube furnace without extended heat treatments at elevated temperatures.