Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electrochemically active Ir NPs on graphene for OER in acidic aqueous electrolyte investigated by in situ and ex situ spectroscopies

MPG-Autoren
/persons/resource/persons104341

Velasco Vélez,  Juan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;

/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104550

Streibel,  Verena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Ir NPs on Graphene for OER_Velasco et al.pdf
(beliebiger Volltext), 480KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Velasco Vélez, J., Jones, T., Streibel, V., Hävecker, M., Chuang, C.-H., Frevel, L., et al. (2019). Electrochemically active Ir NPs on graphene for OER in acidic aqueous electrolyte investigated by in situ and ex situ spectroscopies. Surface Science, 681, 1-8. doi:10.1016/j.susc.2018.10.021.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-D0AA-3
Zusammenfassung
An electrode for the oxygen evolution reaction based on a conductive bi-layered free standing graphene support functionalized with iridium nanoparticles was fabricated and characterized by means of potentiometric and advanced X-ray spectroscopic techniques. It was found that the electrocatalytic activity of iridium nanoparticles is associated to the formation of Ir 5d electron holes. Strong Ir 5d and O 2p hybridization, however, leads to a concomitant increase O 2p hole character, making oxygen electron deficient and susceptible to nucleophilic attack by water. Consequently, more efficient electrocatalysts can be synthesized by increasing the number of electron-holes shared between the metal d and oxygen 2p.