日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Differences in plasma fibrin clot composition in patients with thrombotic antiphospholipid syndrome compared with venous thromboembolism

MPS-Authors
/persons/resource/persons229614

Stachowicz,  Aneta
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78895

Wisniewski,  Jacek R.
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

s41598-018-35034-x.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Stachowicz, A., Zabczyk, M., Natorska, J., Suski, M., Olszanecki, R., Korbut, R., Wisniewski, J. R., & Undas, A. (2018). Differences in plasma fibrin clot composition in patients with thrombotic antiphospholipid syndrome compared with venous thromboembolism. Scientific Reports, 8:. doi:10.1038/s41598-018-35034-x.


引用: https://hdl.handle.net/21.11116/0000-0002-DEDC-D
要旨
The prothrombotic fibrin clot phenotype has been reported in patients with thrombotic antiphospholipid syndrome (APS) and venous thromboembolism (VTE). Protein composition of plasma fibrin clots in APS has not been studied. We evaluated 23 patients with thrombotic APS, 19 with VTE alone, and 20 well-matched controls. A proteomic analysis of fibrin clots generated from citrated plasma was based on liquid chromatography-mass spectrometry. Plasma levels of thrombospondin-1 (TSP1), apolipoprotein(a), A-I, and B-100, complement components (C)3a, C5b-C9, histidine-rich glycoprotein (HRG), and prothrombin were evaluated using immunoenzymatic tests. In plasma fibrin clots of APS patients, compared with VTE subjects and controls, we identified decreased amounts of (pro) thrombin, antithrombin-III, apolipoprotein A-I, and HRG with no differences in plasma levels of antithrombin, prothrombin, along with lower plasma HRG and apolipoprotein A-I. In APS patients, plasma HRG positively correlated with amounts of clot-bound HRG, while apolipoprotein A-I was inversely associated with clot-bound levels of this protein. The most predominant proteins within the clots of APS patients were bone marrow proteoglycan, C5-C9, immunoglobulins, apolipoprotein B-100, platelet-derived proteins, and TSP1. Our study is the first to demonstrate differences in the protein composition of fibrin clots generated from plasma of thrombotic APS patients versus those with VTE alone.