Abstract
Extensive animal studies indicate that the neuromodulator norepinephrine plays an important role in specific aspects of vigilance, attention and learning, putatively serving as a neural interrupt or reset function. The activity of norepinephrine-releasing neurons in the locus coeruleus during attentional tasks is modulated not only by the animal's level of engagement and the sensory inputs, but also by temporally rich aspects of internal decision-making processes. Here, we propose that it is unexpected changes in the world within the context of a task that activate the noradrenergic interrupt signal. We quantify this idea in a Bayesian model of a well-studied visual discrimination task, demonstrating that the model captures a rich repertoire of noradrenergic responses at the sub-second temporal resolution.