English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A framework for mesencephalic dopamine systems based on predictive Hebbian learning

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Montague, P., Dayan, P., & Sejnowski, T. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience, 16(5), 1936-1947. doi:10.1523/JNEUROSCI.16-05-01936.1996.


Cite as: https://hdl.handle.net/21.11116/0000-0002-D68F-C
Abstract
We develop a theoretical framework that shows how mesencephalic dopamine systems could distribute to their targets a signal that represents information about future expectations. In particular, we show how activity in the cerebral cortex can make predictions about future receipt of reward and how fluctuations in the activity levels of neurons in diffuse dopamine systems above and below baseline levels would represent errors in these predictions that are delivered to cortical and subcortical targets. We present a model for how such errors could be constructed in a real brain that is consistent with physiological results for a subset of dopaminergic neurons located in the ventral tegmental area and surrounding dopaminergic neurons. The theory also makes testable predictions about human choice behavior on a simple decision-making task. Furthermore, we show that, through a simple influence on synaptic plasticity, fluctuations in dopamine release can act to change the predictions in an appropriate manner.