Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

Temporal Difference Learning of Position Evaluation in the Game of Go

There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994). Temporal Difference Learning of Position Evaluation in the Game of Go. In J. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information Processing Systems 6 (pp. 817-824). San Mateo, CA, USA: Morgan Kaufmann.

Cite as: https://hdl.handle.net/21.11116/0000-0002-E233-5
The game of Go has a high branching factor that defeats the tree search approach used in computer chess, and long-range spatiotemporal interactions that make position evaluation extremely difficult. Development of conventional Go programs is hampered by their knowledge-intensive nature. We demonstrate a viable alternative by training networks to evaluate Go positions via temporal difference (TD) learning. Our approach is based on network architectures that reflect the spatial organization of both input and reinforcement signals on the Go board, and training protocols that provide exposure to competent (though unlabelled) play. These techniques yield far better performance than undifferentiated networks trained by selfplay alone. A network with less than 500 weights learned within 3,000 games of 9x9 Go a position evaluation function that enables a primitive one-ply search to defeat a commercial Go program at a low playing level.