English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.

MPS-Authors
/persons/resource/persons93324

Hasselbach,  Wilhelm
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Katz, A. M., Repke, D. I., Dunnett, J., & Hasselbach, W. (1977). Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations. The Journal of Biological Chemistry, 252, 1950-1956.


Cite as: https://hdl.handle.net/21.11116/0000-0002-E8DF-E
Abstract
The ability of sarcoplasmic reticulum vesicles to retain calcium following ATP-supported calcium uptake in the presence of the calcium-precipitating anions oxalate and phosphate depends on Cao (calcium ion concentration outside the vesicles) and Cai (calcium ion concentration within the vesicles). Calcium efflux rates at any level of Cai are accelerated when Cao is increased. Higher Cao at the time that calcium uptake reactions reach steady state is associated with a spontaneous calcium release that reflects this effect of increased Cao. Increasing Cai at any level of Cao causes little or no acceleration of calcium efflux rate so that calcium permeability coefficients, estimated by dividing calcium efflux rates by Cai, the "driving force", are inversely proportional to Cai. Calcium permability coefficients thus correlate, as a first approximation, with the ratio Cai/Cao, decreasing 1000-fold as this ratio increases over a 3000-fold range (Cao = 0.1 to 3.3 muM, Cai =4 to 750 muM). Oscillations in both the calcium content of the vesicles and Cao are seen as calcium uptake reactions approach steady state, suggesting that calcium permeability undergoes time-dependent variations. Sudden reduction of Cao to levels that markedly inhibit calcium influx via the calcium pump unmasks a calcium efflux that decreases slowly over 60 to 90 s.The maximal calcium permeability observed in the present study would allow the calcium efflux rate from the sarcoplasmic reticulum at a Cai of 100 muM to be approximately 10(-10) mol/cm2/s, which is about 1 order of magnitude less than that estimated for the sarcoplasmic reticulum of activated skeletal muscle in vivo. The release of most of the stored calcium in some experiments indicates that the observed permeability changes can occur over a large portion of the surface of the sarcoplasmic reticulum.