English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems

MPS-Authors
/persons/resource/persons128352

Kwon,  Min Jung
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62571

Steinhof,  Axel
Service Facility 14C Lab, Dr. A. Steinhof, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62402

Heimann,  Martin
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62444

Kolle,  Olaf
Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons129255

Göckede,  Mathias
Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kwon, M. J., Natali, S. M., Pries, C. E. H., Schuur, E. A. G., Steinhof, A., Crummer, K. G., et al. (2019). Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems. Global Change Biology, 25(4), 1315-1325. doi:10.1111/gcb.14578.


Cite as: https://hdl.handle.net/21.11116/0000-0002-EB1A-9
Abstract
Warming temperatures are likely to accelerate permafrost thaw in the Arctic, potentially leading to the release of old carbon previously stored in deep frozen soil layers. Deeper thaw depths in combination with geomorphological changes due to the loss of ice structures in permafrost, may modify soil water distribution, creating wetter or drier soil conditions. Previous studies revealed higher ecosystem respiration rates under drier conditions, and this study investigated the cause of the increased ecosystem respiration rates using radiocarbon signatures of respired CO2 from two drying manipulation experiments: one in moist and the other in wet tundra. We demonstrate that higher contributions of CO2 from shallow soil layers (0–15 cm; modern soil carbon) drive the increased ecosystem respiration rates, while contributions from deeper soil (below 15 cm from surface and down to the permafrost table; old soil carbon) decreased. These changes can be attributed to more aerobic conditions in shallow soil layers, but also the soil temperature increases in shallow layers but decreases in deep layers, due to the altered thermal properties of organic soils. Decreased abundance of aerenchymatous plant species following drainage in wet tundra reduced old carbon release but increased aboveground plant biomass elevated contributions of autotrophic respiration to ecosystem respiration. The results of this study suggest that drier soils following drainage may accelerate decomposition of modern soil carbon in shallow layers but slow down decomposition of old soil carbon in deep layers, which may offset some of the old soil carbon loss from thawing permafrost.