English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

How to control selectivity in alkane oxidation?

MPS-Authors
/persons/resource/persons126970

Li,  Xuan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
UniCat-BASF Joint Lab, Technische Universität Berlin, Sekr. EW K 01;

/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion;

/persons/resource/persons104550

Pfeifer,  Verena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons134632

Masliuk,  Liudmyla
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons185557

Fu,  Teng
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons213432

Wang,  Yuanqing
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
UniCat-BASF Joint Lab, Technische Universität Berlin, Sekr. EW K 01;

/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Seitz,  Friedrich
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21557

Girgsdies,  Frank
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion;

/persons/resource/persons22181

Trunschke,  Annette
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

c8sc04641g.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Li, X., Teschner, D., Pfeifer, V., Lunkenbein, T., Masliuk, L., Fu, T., et al. (2019). How to control selectivity in alkane oxidation? Chemical Science, 10(8), 2429-2443. doi:10.1039/C8SC04641G.


Cite as: http://hdl.handle.net/21.11116/0000-0002-EEA4-9
Abstract
The well-defined particle morphology of crystalline MnWO4 catalysts investigated in the present study facilitates obtaining insight into the origin of selectivity limitations in alkane oxidation. Hydrothermal synthesis at variable pH values granted access to a series of phase-pure MnWO4 catalysts with particles ranging from cube-like (aspect ratio 1.5) to rod- or needle-like (aspect ratio 6.8) shapes. Kinetic studies reveal a strong dependence of the propane consumption rate on the particle shape. The true origin of the structure sensitivity was unraveled by comprehensive bulk and surface analysis using nitrogen adsorption, XRD, SEM, ADF-STEM, STEM-EELS, XPS, multi-laser excitation Raman and DRIFT/operando FTIR spectroscopies, temperature-programmed oxidation (TPO), in situ NEXAFS, and DFT calculations. The active phase is composed of a thin manganese oxy-hydroxide layer formed on the surface of crystalline MnWO4. The differences in catalytic performance within the series clearly illustrate that the structural motif as the most popular descriptor in oxidation catalysis is not essential, since all MnWO4 catalysts in the series under study exhibit the same bulk crystal structure and bulk chemical composition and are phase pure and homogenous. The variable particle shape serves as a proxy that reflects the formation of varying abundance of redox active Mn2+/Mn3+ surface sites, which correlates with catalytic activity. Operando FTIR spectroscopy directly confirms the formation of Mn–OH surface species by abstraction of hydrogen atoms from the propane molecule on nucleophilic oxygen atoms and suggests that active site regeneration occurs via oxidative dehydrogenation of Mn–OH species indicating a single-site nature of the active sites that does not allow four-electron reduction of molecular oxygen. Instead, intermediates are created that cause side reactions and lower the selectivity. The findings highlight fundamental design criteria that may be applied to advance the development of new alkane oxidation catalysts with improved selectivity.