Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultrafast transport and relaxation of hot plasmonic electrons in metal-dielectric heterostructures

MPG-Autoren
/persons/resource/persons182542

Razdolski,  Ilya
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1901.08887.pdf
(Preprint), 3MB

PhysRevB.100.045412.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Razdolski, I., Chekhov, A. L., Stognij, A. I., & Stupakiewicz, A. (2019). Ultrafast transport and relaxation of hot plasmonic electrons in metal-dielectric heterostructures. Physical Review B, 100(4): 045412. doi:10.1103/PhysRevB.100.045412.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-EF5F-8
Zusammenfassung
Owing to the ultrashort timescales of ballistic electron transport, relaxation dynamics of hot nonequilibrium electrons is conventionally considered local. Utilizing propagating surface plasmon-polaritons (SPs) in metal-dielectric heterostructures, we demonstrate that both local (relaxation) and nonlocal (transport) hot electron dynamics contribute to the transient optical response. The data obtained in two distinct series of pump-probe experiments demonstrate a strong increase in both nonthermal electron generation efficiency and nonlocal relaxation timescales at the SP resonance. We develop a simple kinetic model incorporating a SP excitation, where both local and nonlocal electron relaxation in metals are included, and analyze nonequilibrium electron dynamics in its entirety in the case of collective electronic excitations. Our results elucidate the role of SPs in nonequilibrium electron dynamics and demonstrate rich perspectives of ultrafast plasmonics for tailoring spatiotemporal distribution of hot electrons in metallic nanostructures.