English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?

MPS-Authors
/persons/resource/persons205268

Germer,  Sonja
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62438

Kleidon,  Axel
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2996.pdf
(Publisher version), 3MB

Supplementary Material (public)

BGC2996s1.zip
(Supplementary material), 2MB

Citation

Germer, S., & Kleidon, A. (2019). Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014? PLoS One, 14(2): e0211028. doi:10.1371/journal.pone.0211028.


Cite as: https://hdl.handle.net/21.11116/0000-0002-F5F8-2
Abstract
The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials.