English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Identifying the Parametric Occurrence of Multiple Steady States for some Biological Networks

MPS-Authors
/persons/resource/persons73108

Sturm,  Thomas
Automation of Logic, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

arXiv:1902.04882.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bradford, R., Davenport, J. H., England, M., Errami, H., Gerdt, V., Grigoriev, D., et al. (2019). Identifying the Parametric Occurrence of Multiple Steady States for some Biological Networks. Retrieved from http://arxiv.org/abs/1902.04882.


Cite as: http://hdl.handle.net/21.11116/0000-0002-FF3C-D
Abstract
We consider a problem from biological network analysis of determining regions in a parameter space over which there are multiple steady states for positive real values of variables and parameters. We describe multiple approaches to address the problem using tools from Symbolic Computation. We describe how progress was made to achieve semi-algebraic descriptions of the multistationarity regions of parameter space, and compare symbolic results to numerical methods. The biological networks studied are models of the mitogen-activated protein kinases (MAPK) network which has already consumed considerable effort using special insights into its structure of corresponding models. Our main example is a model with 11 equations in 11 variables and 19 parameters, 3 of which are of interest for symbolic treatment. The model also imposes positivity conditions on all variables and parameters. We apply combinations of symbolic computation methods designed for mixed equality/inequality systems, specifically virtual substitution, lazy real triangularization and cylindrical algebraic decomposition, as well as a simplification technique adapted from Gaussian elimination and graph theory. We are able to determine multistationarity of our main example over a 2-dimensional parameter space. We also study a second MAPK model and a symbolic grid sampling technique which can locate such regions in 3-dimensional parameter space.