Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Retrospective model-based inference guides model-free credit assignment

MPG-Autoren
/persons/resource/persons217460

Dayan,  P
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Moran, R., Keramati, M., Dayan, P., & Dolan, R. (2019). Retrospective model-based inference guides model-free credit assignment. Nature Communications, 10: 750, pp. 1-14. doi:10.1038/s41467-019-08662-8.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-0353-C
Zusammenfassung
An extensive reinforcement learning literature shows that organisms assign credit efficiently, even under conditions of state uncertainty. However, little is known about credit-assignment when state uncertainty is subsequently resolved. Here, we address this problem within the framework of an interaction between model-free (MF) and model-based (MB) control systems. We present and support experimentally a theory of MB retrospective-inference. Within this framework, a MB system resolves uncertainty that prevailed when actions were taken thus guiding an MF credit-assignment. Using a task in which there was initial uncertainty about the lotteries that were chosen, we found that when participants' momentary uncertainty about which lottery had generated an outcome was resolved by provision of subsequent information, participants preferentially assigned credit within a MF system to the lottery they retrospectively inferred was responsible for this outcome. These findings extend our knowledge about the range of MB functions and the scope of system interactions.