English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural Investigation of Silicon Carbide X Grains: Constraints on Condensation in Supernova Ejecta

MPS-Authors
/persons/resource/persons101071

Kodolányi,  János
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101012

Hoppe,  Peter
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kodolányi, J., Vollmer, C., Hoppe, P., & Mueller, M. (2018). Structural Investigation of Silicon Carbide X Grains: Constraints on Condensation in Supernova Ejecta. Astrophysical Journal, 868(1): 34. doi:10.3847/1538-4357/aae482.


Cite as: https://hdl.handle.net/21.11116/0000-0003-07AE-2
Abstract
We analyzed seven presolar SiC grains of supernova origin (average diameter: 1–2 μm) with transmission electron microscopy. Five grains are polycrystalline, whereas two grains are single crystals. Individual crystal domains of polycrystalline grains are in epitaxial relationship, with two grains consisting almost entirely of twinned crystal domains. Most grains are free of inclusions (only one TiC inclusion and one iron- and nickel-rich inclusion were found in two separate grains). Almost all crystals have cubic symmetry (3C polytype), but we found hexagonal SiC (6H polytype) in two grains. The large range of crystal domain sizes (average diameter: 50–970 nm), as well as the larger fraction of noncubic SiC polytypes in supernova grains relative to SiC grains that crystallized in the winds of asymptotic giant branch (AGB) stars, suggest that SiC condensation in supernova ejecta occurs at a larger range of chemical and physical conditions, including supersaturation, than in the winds of AGB stars. Modeling condensation of SiC struggles to produce SiC grains as large as, or bigger than, observed here, if condensation of large (i.e., several μm in diameter) graphite grains is to precede that of SiC, which is suggested by the presolar grain record and published equilibrium condensation models. We propose that future models of graphite and SiC condensation in SN ejecta explore higher ejecta densities than before, as well as gas compositions that are more silicon- and carbon-rich. Furthermore, we infer that some supernova SiC grains may have formed without prior condensation of graphite from their parent gas.