English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas-particle partitioning and implications for long-range atmospheric transport

MPS-Authors
/persons/resource/persons230415

Wilson,  Jake
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101095

Lammel,  Gerhard
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Degrendele, C., Wilson, J., Kukucka, P., Klanova, J., & Lammel, G. (2018). Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas-particle partitioning and implications for long-range atmospheric transport. Atmospheric Chemistry and Physics, 18(17), 12877-12890. doi:10.5194/acp-18-12877-2018.


Cite as: https://hdl.handle.net/21.11116/0000-0003-069F-4
Abstract
This study presents multi-year monitoring data on atmospheric polybrominated diphenyl ethers (PBDEs) in central Europe. Air was sampled on a weekly basis at a background site in the central Czech Republic from 2011 to 2014 (N = 114). Σ8PBDEs (without BDE209) total (gas and particulate) concentrations ranged from 0.084 to 6.08pgm−3, while BDE209 was at 0.05–5.01pgm−3. BDE47, BDE99 and BDE183 were the major contributors to Σ8PBDEs.

Overall, the atmospheric concentrations of individual PBDEs were controlled by deposition processes, meteorological parameters and long-range atmospheric transport. Regarding gas–particle partitioning, with the exception of BDE28 (gaseous) and BDE209 (particulate), all congeners were consistently detected in both phases. Clear seasonal variations with significantly higher measured particulate fraction (θmeasured) in winter compared to summer was found for all PBDEs except BDE209. For example, while the average θmeasured of BDE47 was 0.53±0.19 in winter, this was only 0.01±0.02 in summer. Similarly, for BDE99, θmeasured was 0.89±0.13 in winter, while it was only 0.12±0.08 in summer. The observed gas–particle partitioning coefficient (Kp, in m3µg−1) was compared with three model predictions, assuming equilibrium or a steady state. None of the models could provide a satisfactory prediction of the partitioning, suggesting the need for a universally applicable model.

Statistically significant decreases of the atmospheric concentrations during 2011–2014 were found for BDE99, 100, 153 and 209. Estimated apparent atmospheric halving times for these congeners ranged from 2.8 (BDE209) to 4.8 (BDE153) years. The results suggest that photolytic debromination to lower brominated congeners may significantly influence PBDE concentration levels and patterns in the atmosphere.