English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest

MPS-Authors
/persons/resource/persons230452

Saturno,  Jorge
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230376

Ditas,  Florian
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101175

Penning de Vries,  M.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons213647

Holanda,  Bruna A.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203102

Pöhlker,  Mira L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons194739

Hrabe de Angelis,  Isabella
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230466

Moran-Zuloaga,  Daniel
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  Johannes
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204098

Schulz,  Christiane
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101349

Wagner,  Thomas
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230413

Andreae,  Meinrat O.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons104597

Pöhlker,  Christopher
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saturno, J., Ditas, F., Penning de Vries, M., Holanda, B. A., Pöhlker, M. L., Carbone, S., et al. (2018). African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmospheric Chemistry and Physics, 18(14), 10391-10405. doi:10.5194/acp-18-10391-2018.


Cite as: https://hdl.handle.net/21.11116/0000-0003-0946-5
Abstract
The long-range transport (LRT) of trace gases and aerosol particles plays an important role for the composition of the Amazonian rain forest atmosphere. Sulfate aerosols originate to a substantial extent from LRT sources and play an important role in the Amazonian atmosphere as strongly light-scattering particles and effective cloud condensation nuclei. The transatlantic transport of volcanic sulfur emissions from Africa has been considered as a source of particulate sulfate in the Amazon; however, direct observations have been lacking so far. This study provides observational evidence for the influence of emissions from the Nyamuragira–Nyiragongo volcanoes in Africa on Amazonian aerosol properties and atmospheric composition during September 2014. Comprehensive ground-based and airborne aerosol measurements together with satellite observations are used to investigate the volcanic event. Under the volcanic influence, hourly mean sulfate mass concentrations in the submicron size range reached up to 3.6 µg m−3 at the Amazon Tall Tower Observatory, the highest value ever reported in the Amazon region. The substantial sulfate injection increased the aerosol hygroscopicity with κ values up to 0.36, thus altering aerosol–cloud interactions over the rain forest. Airborne measurements and satellite data indicate that the transatlantic transport of volcanogenic aerosols occurred in two major volcanic plumes with a sulfate-enhanced layer between 4 and 5 km of altitude. This study demonstrates how African aerosol sources, such as volcanic sulfur emissions, can substantially affect the aerosol cycling and atmospheric processes in Amazonia.