English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane

MPS-Authors
/persons/resource/persons100964

Gromov,  Sergey
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100865

Brenninkmeijer,  Carl A. M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gromov, S., Brenninkmeijer, C. A. M., & Jöckel, P. (2018). A very limited role of tropospheric chlorine as a sink of the greenhouse gas methane. Atmospheric Chemistry and Physics, 18(13), 9831-9843. doi:10.5194/acp-18-9831-2018.


Cite as: https://hdl.handle.net/21.11116/0000-0003-0513-2
Abstract
Unexpectedly large seasonal phase differences between CH4 concentration and its 13C ∕ 12C isotopic ratio and their inter-annual variations observed in southern hemispheric time series have been attributed to the Cl + CH4 reaction, in which 13CH4 is discriminated strongly compared to OH + CH4, and have provided the only (indirect) evidence of a hemispheric-scale presence of oxidative cycle-relevant quantities of tropospheric atomic Cl. Our analysis of concurrent New Zealand and Antarctic time series of CH4 and CO mixing and isotope ratios shows that a corresponding 13C ∕ 12C variability is absent in CO. Using the AC-GCM EMAC model and isotopic mass balancing for comparing the periods of presumably high and low Cl, it is shown that variations in extra-tropical Southern Hemisphere Cl cannot have exceeded 0.9 × 103 atoms cm−3. It is demonstrated that the 13C ∕ 12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources. Despite ambiguities about the yield of CO from CH4 oxidation (with this yield being an important factor in the budget of CO) and uncertainties about the isotopic composition of sources of CO (in particular biomass burning), the contribution of Cl to the removal of CH4 in the troposphere is probably much lower than currently assumed.