English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Femtosecond Laser Ablation-ICP-Mass Spectrometry and CHNS Elemental Analyzer Reveal Trace Element Characteristics of Danburite from Mexico, Tanzania, and Vietnam

MPS-Authors
/persons/resource/persons191539

Otter,  Laura M.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204157

Macholdt,  Dorothea
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101360

Weis,  Ulrike
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101291

Stoll,  Brigitte
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101034

Jochum,  Klaus P.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huong, L.-T.-T., Otter, L. M., Forster, M. W., Hauzenberger, C. A., Krenn, K., Alard, O., et al. (2018). Femtosecond Laser Ablation-ICP-Mass Spectrometry and CHNS Elemental Analyzer Reveal Trace Element Characteristics of Danburite from Mexico, Tanzania, and Vietnam. Minerals, 8(6): 234. doi:10.3390/min8060234.


Cite as: https://hdl.handle.net/21.11116/0000-0003-04CB-4
Abstract
Danburite is a calcium borosilicate that forms within the transition zones of metacarbonates and pegmatites as a late magmatic accessory mineral. We present here trace element contents obtained by femtosecond laser ablation-inductively coupled plasma (ICP)-mass spectrometry for danburite from Mexico, Tanzania, and Vietnam. The Tanzanian and Vietnamese samples show high concentrations of rare earth elements (∑REEs 1900 µg∙g−1 and 1100 µg∙g−1, respectively), whereas Mexican samples are depleted in REEs (<1.1 µg∙g−1). Other traces include Al, Sr, and Be, with Al and Sr dominating in Mexican samples (325 and 1611 µg∙g−1, respectively). Volatile elements, analyzed using a CHNS elemental analyzer, reach <3000 µg∙g−1. Sr and Al are incorporated following Ca2+ = Sr2+ and 2 B3+ + 3 O2− = Al3+ + 3 OH− + □ (vacancy). REEs replace Ca2+ with a coupled substitution of B3+ by Be2+. Cerium is assumed to be present as Ce4+ in Tanzanian samples based on the observed Be/REE molar ratio of 1.5:1 following 2 Ca2+ + 3 B3+ = Ce4+ + REE3+ + 3 Be2+. In Vietnamese samples, Ce is present as Ce3+ seen in a Be/REE molar ratio of 1:1, indicating a substitution of Ca2+ + B3+ = REE3+ + Be2+. Our results imply that the trace elements of danburite reflect different involvement of metacarbonates and pegmatites among the different locations.