English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deep learning and process understanding for data-driven Earth system science

MPS-Authors
/persons/resource/persons62524

Reichstein,  Markus
Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62425

Jung,  Martin
Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62352

Carvalhais,  Nuno
Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC3001P.pdf
(Postprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195-204. doi:10.1038/s41586-019-0912-1.


Cite as: https://hdl.handle.net/21.11116/0000-0003-0B7B-8
Abstract
Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning.