English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air

MPS-Authors
/persons/resource/persons204129

Li,  Guo
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Yafang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203111

Kuhn,  Uwe
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons133113

Meusel,  Hannah
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons194521

Wang,  Zhibin
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons230378

Li,  Meng
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  Hang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, G., Cheng, Y., Kuhn, U., Xu, R., Yang, Y., Meusel, H., et al. (2019). Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air. Atmospheric Chemistry and Physics, 19(4), 2209-2232. doi:10.5194/acp-19-2209-2019.


Cite as: https://hdl.handle.net/21.11116/0000-0003-0E9E-D
Abstract
Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs under ambient air conditions of an urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net deposition with average uptake coefficients (γ) in the range of 10−7–10−6 (referring to the geometric soil surface area), corresponding to deposition velocities (Vd) of 0.0013–0.01 cm s−1 and soil surface resistances (Rc) of 98–745 s cm−1, respectively. Formic acid, however, was emitted at a long-term average rate of ∼6×10−3 nmol m−2 s−1, suggesting that it was formed and released upon heterogeneous oxidation of other VOCs. The soil–atmosphere exchange of one individual VOC species can be affected by both its surface degradation/depletion caused by surface reactions and by competitive uptake or heterogeneous formation/accommodation of other VOC species. Overall, the results show that physicochemical processing and heterogeneous oxidation on soil and soil-derived dust can act as a sink or as a source of atmospheric VOCs, depending on molecular properties and environmental conditions.