Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants

MPG-Autoren
/persons/resource/persons183347

Kesten,  C.
Plant Cell Walls - Persson, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons179760

Schneider,  R.
Plant Cell Walls - Persson, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons104719

Szymanski,  Witold G.
Plant Cell Walls - Persson, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97336

Persson,  S.
Plant Cell Walls - Persson, Max Planck Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kesten, C., Wallmann, A., Schneider, R., McFarlane, H. E., Diehl, A., Khan, G. A., et al. (2019). The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nature Communications, 10(1): 857. doi:10.1038/s41467-019-08780-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-0EF4-B
Zusammenfassung
Microtubules are filamentous structures necessary for cell division, motility and morphology, with dynamics critically regulated by microtubule-associated proteins (MAPs). Here we outline the molecular mechanism by which the MAP, COMPANION OF CELLULOSE SYNTHASE1 (CC1), controls microtubule bundling and dynamics to sustain plant growth under salt stress. CC1 contains an intrinsically disordered N-terminus that links microtubules at evenly distributed points through four conserved hydrophobic regions. By NMR and live cell analyses we reveal that two neighboring residues in the first hydrophobic binding motif are crucial for the microtubule interaction. The microtubule-binding mechanism of CC1 is reminiscent to that of the prominent neuropathology-related protein Tau, indicating evolutionary convergence of MAP functions across animal and plant cells.