English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval

MPS-Authors
/persons/resource/persons206666

Yates,  Andrew
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, C., Sun, Y., He, B., Wang, L., Hui, K., Yates, A., et al. (2018). NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval. In E. Riloff, D. Chiang, J. Hockenmaier, & T. Jun'ichi (Eds.), The Conference on Empirical Methods in Natural Language Processing (pp. 4482-4491). Stroudsburg, PA: ACL. Retrieved from https://aclanthology.info/papers/D18-1478/d18-1478.


Cite as: http://hdl.handle.net/21.11116/0000-0003-11BB-7
Abstract
There is no abstract available