English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study

MPS-Authors
/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216082

Schuppert,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216025

Herz,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons230667

Glang,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216054

Lindig,  T
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zaiss, M., Deshmane, A., Schuppert, M., Herz, K., Glang, F., Ehses, P., et al. (2019). DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study. Magnetic Resonance in Medicine, 81(6), 3901-3914. doi:10.1002/mrm.27690.


Cite as: https://hdl.handle.net/21.11116/0000-0003-1295-0
Abstract
Purpose
To determine the feasibility of employing the prior knowledge of well‐separated chemical exchange saturation transfer (CEST) signals in the 9.4 T Z‐spectrum to separate overlapping CEST signals acquired at 3 T, using a deep learning approach trained with 3 T and 9.4 T CEST spectral data from brains of the same subjects.
Methods

Highly spectrally resolved Z‐spectra from the same volunteer were acquired by 3D‐snapshot CEST MRI at 3 T and 9.4 T at low saturation power of B1 = 0.6 µT. The volume‐registered 3 T Z‐spectra‐stack was then used as input data for a three layer deep neural network with the volume‐registered 9.4 T fitted parameter stack as target data.
Results

An optimized neural net architecture could be found and verified in healthy volunteers. The gray‐/white‐matter contrast of the different CEST effects was predicted with only small deviations (Pearson R = 0.89). The 9.4 T prediction was less noisy compared to the directly measured CEST maps, although at the cost of slightly lower tissue contrast. Application to an unseen tumor patient measured at 3 T and 9.4 T revealed that tumorous tissue Z‐spectra and corresponding hyper‐/hypointensities of different CEST effects can also be predicted (Pearson R = 0.84).
Conclusion

The 9.4 T CEST signals acquired at low saturation power can be accurately estimated from CEST imaging at 3 T using a neural network trained with coregistered 3 T and 9.4 T data of healthy subjects. The deepCEST approach generalizes to Z‐spectra of tumor areas and might indicate whether additional ultrahigh‐field (UHF) scans will be beneficial.