English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Highly Active Cobalt-Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction

MPS-Authors
/persons/resource/persons222290

Moon,  Gun-Hee
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons217626

Yu,  Mingquan
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons205506

Chan,  Candace K.
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, , Tempe, AZ USA;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Moon, G.-H., Yu, M., Chan, C. K., & Tüysüz, H. (2019). Highly Active Cobalt-Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie International Edition, 58(11), 3491-3495. doi:10.1002/anie.201813052.


Cite as: https://hdl.handle.net/21.11116/0000-0003-1B15-8
Abstract
In situ formation of electroactive cobalt species for the oxygen evolution reaction is simply achieved by applying an anodic bias to a commercially available cobalt precursor and Nafion binder mixture coated on a glassy carbon electrode. This preparation does not require energy-intensive materials preparation steps or noble metals, yet a low overpotential of 322 mV at 10.2 mA cm−2 and a high current density of more than 300 mA cm-2 at 1.7 VNHE were obtained in 1 m KOH. An operando electrochemical Raman spectroscopy study confirmed the formation of cobalt oxyhydroxide species and the iron stimulated the equilibrium state between Co3+ and Co4+. The iron present in the alkali electrolyte or ink solution effectively activated the cobalt species, and most of the first row transition metals could also enhance the catalytic performance. The concept presented here is one of the simplest strategies for preparing highly active electrocatalysts and is very flexible for the replacement of cobalt by other transition metals.