English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake

MPS-Authors
/persons/resource/persons256594

Graf,  Jon
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210593

Marchant,  H.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Tienken,  Daniela
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210426

Hach,  Philipp F.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210556

Kuypers,  Marcel M.M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210612

Milucka,  J.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Graf_2018_01.pdf
(Publisher version), 833KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Graf, J., Mayr, M. J., Marchant, H., Tienken, D., Hach, P. F., Brand, A., et al. (2018). Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake. Environmental Microbiology, 20(7), 2598-2614. doi:10.1111/1462-2920.14285.


Cite as: https://hdl.handle.net/21.11116/0000-0003-B834-3
Abstract
Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N-2 and O-2 from nitric oxide (NO). Here, we describe a new species of the NC10 clade, 'Ca. Methylomirabilis limnetica', which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to 'Ca. M. limnetica' constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of 'Ca. M. limnetica' exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that 'Ca. M. limnetica' temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 bacteria in the lacustrine methane and nitrogen cycle.