Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Lack of Robustness in Artificial Neural Networks

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bethge, M. (2019). Lack of Robustness in Artificial Neural Networks. Neuroforum, 25(Supplement 1): S23-1, 179.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-1F71-C
Zusammenfassung
Deep neural networks have become a ubiquitous tool in a broad range of AI applications. Resembling important aspects of rapid feed-forward visual processing in the ventral stream they can be trained to
match human behavior on standardized pattern recognition tasks. Outside the training distribution, however, decision making of artificial neural networks exhibits large discrepancies to biological vision
systems. I will give an overview on the lack of robustness in deep neural networks and present recent results of my lab to quantify and overcome these discrepancies.