English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI)

MPS-Authors
/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Göksu, C., Scheffler, K., Siebner, H., Thielscher, A., & Hanson, L. (2019). The stray magnetic fields in Magnetic Resonance Current Density Imaging (MRCDI). Physica Medica, 59, 142-150. doi:10.1016/j.ejmp.2019.02.022.


Cite as: https://hdl.handle.net/21.11116/0000-0003-2238-8
Abstract
Purpose
MR Current Density Imaging (MRCDI) involves weak current-injection into the head. The resulting magnetic field changes are measured by MRI. Stray fields pose major challenges since these can dominate the fields caused by tissue currents. We analyze the sources and influences of stray fields.
Methods

First, we supply validation data for a recently introduced MRCDI method with an unprecedented noise floor of ∼0.1 nT in vivo. Second, we assess the accuracy limit of the method and our corresponding cable current correction in phantoms ensuring high signal-to-noise ratio (SNR). Third, we simulate the influence of stray fields on current flow reconstructions for various realistic experimental set-ups. Fourth, we experimentally determine the physiological field variations. Finally, we explore the consequences of head positioning in an exemplary head coil, since off-center positioning provides space for limiting cable-induced fields.
Results

The cable correction method performs well except near the cables. Unless correcting for cable currents, the reconstructed current flow is easily misestimated by up to 45% for a realistic experimental set-up. Stray fields dominating the fields caused by tissue currents can occur, e.g. due to a wire segment 20 cm away from the imaged region, or due to a slight cable misalignment of 3°. The noise is increased by 40% due to physiological factors. Minor patient movements can cause field changes of ∼40 nT. Off-centered head positioning can locally reduce SNR by e.g. 30%.
Conclusions

Quantification of stray fields showed that MRCDI requires careful field correction. After cable correction, physiological noise is a limiting factor.