English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Separate pathways contribute to the herbivore-induced formation of 2-phenylethanol in poplar

MPS-Authors
/persons/resource/persons129488

Günther,  Jan
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons204520

Lackus,  Nathalie
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4147

Schmidt,  Axel
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons73060

Huber,  Meret
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons231272

Stödtler,  Heike-Jana
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4116

Reichelt,  Michael
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3884

Gershenzon,  Jonathan
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3982

Köllner,  Tobias G.
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Günther, J., Lackus, N., Schmidt, A., Huber, M., Stödtler, H.-J., Reichelt, M., et al. (2019). Separate pathways contribute to the herbivore-induced formation of 2-phenylethanol in poplar. Plant Physiology, 180(2), 767-782. doi:10.1104/pp.19.00059.


Cite as: http://hdl.handle.net/21.11116/0000-0003-28BF-A
Abstract
Upon herbivory, the tree species western balsam poplar (Populus trichocarpa) produces a variety of phenylalanine-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-D-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic L-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in Escherichia coli and Nicotiana benthamiana showed that all five AADC/AAS genes identified in the P. trichocarpa genome encode active enzymes. However, only two genes, PtAADC1 and PtAAS1, were significantly upregulated after leaf herbivory. Despite a sequence similarity of about 96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted phenylalanine into 2-phenylethylamine and 2-phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative AADC/AAS gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNAi-mediated downregulation of AADC1 in grey poplar (P. × canescens) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-D-glucopyranoside, while the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two P. trichocarpa short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-D-glucopyranoside in planta, while PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.