English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia

MPS-Authors
/persons/resource/persons201764

Tschentscher,  Nadja
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, Ludwig Maximilians University Munich, Germany;

/persons/resource/persons103139

Ruisinger,  Anja
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19605

Díaz,  Begoña
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Vallès, Spain;

/persons/resource/persons20071

von Kriegstein,  Katharina
Max Planck Research Group Neural Mechanisms of Human Communication, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, TU Dresden, Germany;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tschentscher, N., Ruisinger, A., Blank, H., Díaz, B., & von Kriegstein, K. (2019). Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia. The Journal of Neuroscience, 39(9), 1720-1732. doi:10.1523/JNEUROSCI.1435-18.2018.


Cite as: http://hdl.handle.net/21.11116/0000-0003-2C91-8
Abstract
Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however, recent evidence also points toward sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. Here, we tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory-motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging-based probabilistic tracking, we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANln scores in dyslexics, but was in neurotypical readers. Our findings provide the first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia and it may also affect reading-related cognitive abilities in neurotypical readers.SIGNIFICANCE STATEMENT Developmental dyslexia is one of the most widespread learning disabilities. Although previous neuroimaging research mainly focused on pathomechanisms of dyslexia at the cerebral cortex level, several lines of evidence suggest an atypical functioning of subcortical sensory structures. By means of diffusion tensor imaging, we here show that dyslexic male adults have reduced white matter connectivity in a cortico-thalamic auditory pathway between the left auditory motion-sensitive planum temporale and the left medial geniculate body. Connectivity strength of this pathway was associated with measures of reading fluency in neurotypical readers. This is novel evidence on the neurocognitive correlates of reading proficiency, highlighting the importance of cortico-subcortical interactions between regions involved in the processing of spectrotemporally complex sound.