Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonadditivity of the Adsorption Energies of Linear Acenes on Au(111): Molecular Anisotropy and Many-Body Effects

MPG-Autoren
/persons/resource/persons144494

Cheenicode Kabeer,  Fairoja
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maass, F., Ajdari, M., Cheenicode Kabeer, F., Vogtland, M., Tkatchenko, A., & Tegeder, P. (2019). Nonadditivity of the Adsorption Energies of Linear Acenes on Au(111): Molecular Anisotropy and Many-Body Effects. The Journal of Physical Chemistry Letters, 10(5), 1000-1004. doi:10.1021/acs.jpclett.9b00265.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-3B65-A
Zusammenfassung
Adsorption energies of chemisorbed molecules on inorganic solids usually scale linearly with molecular size and are well described by additive scaling laws. However, much less is known about scaling laws for physisorbed molecules. Our temperature-programmed desorption experiments demonstrate that the adsorption energy of acenes (benzene to pentacene) on the Au(111) surface in the limit of low coverage is highly nonadditive with respect to the molecular size. For pentacene, the deviation from an additive scaling of the adsorption energy amounts to as much as 0.7 eV. Our first-principles calculations explain the observed nonadditive behavior in terms of anisotropy of molecular polarization stemming from many-body electronic correlations. The observed nonadditivity of the adsorption energy has implications for surface-mediated intermolecular interactions and the ensuing on-surface self-assembly. Thus, future coverage-dependent studies should aim to gain insights into the impact of these complex interactions on the self-assembly of π-conjugated organic molecules on metal surfaces.