Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fixed-target serial oscillation crystallography at room temperature

MPG-Autoren
/persons/resource/persons196452

Paré-Labrosse,  O.
Departments of Chemistry and Physics, University of Toronto;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons209117

Mehrabi,  P.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136024

Miller,  R. J. D.
Departments of Chemistry and Physics, University of Toronto;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

mf5030.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

mf5030sup1.pdf
(Ergänzendes Material), 120KB

mf5030sup2.mp4
(Ergänzendes Material), 41MB

Zitation

Wierman, J. L., Paré-Labrosse, O., Sarracini, A., Besaw, J. E., Cook, M. J., Oghbaey, S., et al. (2019). Fixed-target serial oscillation crystallography at room temperature. IUCrJ, 6, 305-316. doi:10.1107/S2052252519001453.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-3387-B
Zusammenfassung
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1–5° of data per crystal at room temperature with fast (10° s−1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement – up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.