English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High‐resolution GC/MS studies of a light crude oil fraction

MPS-Authors
/persons/resource/persons231451

Kondyli,  Aikaterini
Service Department Schrader (MS), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58974

Schrader,  Wolfgang
Service Department Schrader (MS), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kondyli, A., & Schrader, W. (2019). High‐resolution GC/MS studies of a light crude oil fraction. Journal of Mass Spectrometry, 54(1), 47-54. doi:10.1002/jms.4306.


Cite as: https://hdl.handle.net/21.11116/0000-0003-84D7-5
Abstract
The continuous development in analytical instrumentation has brought the newly developed Orbitrap‐based gas chromatography / mass spectrometry (GC/MS) instrument into the forefront for the analysis of complex mixtures such as crude oil. Traditional instrumentation usually requires a choice to be made between mass resolving power or an efficient chromatographic separation, which ideally enables the distinction of structural isomers that is not possible by mass spectrometry alone. Now, these features can be combined, thus enabling a deeper understanding of the constituents of volatile samples on a molecular level. Although electron ionization is the most popular ionization method employed in GC/MS analysis, the need for softer ionization methods has led to the utilization of atmospheric pressure ionization sources. The last arrival to this family is the atmospheric pressure photoionization (APPI), which was originally developed for liquid chromatography / mass spectrometry (LC/MS). With a newly developed commercial GC‐APPI interface, it is possible to extend the characterization of unknown compounds. Here, first results about the capabilities of the GC/MS instrument under high or low energy EI or APPI are reported on a volatile gas condensate. The use of different ionization energies helps matching the low abundant molecular ions to the structurally important fragment ions. A broad range of compounds from polar to medium polar were successfully detected and complementary information regarding the analyte was obtained.