User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Structure and Mechanisms of F-Type ATP Synthases


Kühlbrandt,  Werner
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Kühlbrandt, W. (2019). Structure and Mechanisms of F-Type ATP Synthases. Annual Review of Biochemistry, 88, 515-549. doi:10.1146/annurev-biochem-013118-110903.

Cite as: http://hdl.handle.net/21.11116/0000-0003-3B07-4
F1 Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1 Fo complex explains how ATP synthesis is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.