Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

Optimized dualCEST-MRI for imaging of endogenous bulk mobile proteins in the human brain

MPG-Autoren
/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215996

Deshmane,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216025

Herz,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Breitling, J., Goerke, S., Zaiss, M., Soehngen, Y., Deshmane, A., Herz, K., et al. (2018). Optimized dualCEST-MRI for imaging of endogenous bulk mobile proteins in the human brain. In 7th International Workshop on Chemical Exchange Saturation Transfer (CEST 2018) (pp. 12).


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-44D4-1
Zusammenfassung
Recently we demonstrated that a selective detection of endogenous bulk mobile proteins in living tissue can be realized by the novel approach of dual-frequency irradiation CEST (dualCEST)-MRI1
without contamination of saturation transfer effects of metabolites, lipids and
semi-solids. For this approach, specificity is achieved by measuring the intramolecular magnetization transfer (i.e. saturation crosstalk T) between CEST signals resonating at two different frequency offsets Δω and Δωc (Fig. 1a). Such a non-invasive imaging technique may be of particular interest for the detection of pathological alterations of protein expression, such as in
neurodegenerative diseases or cancer. Until now, application in clinical trials
was prevented by the inherently small signal-to-noise ratio (SNR) in
comparison to conventional CEST approaches. Here, we present further
developments in signal preparation, image acquisition and post-processing techniques enabling dualCEST examinations in a reasonable and clinicallyrelevant time frame.