English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Terahertz Compression of Electron Pulses at a Planar Mirror Membrane

MPS-Authors
/persons/resource/persons195411

Ehberger,  Dominik
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Ludwig-Maximilians-Universität München;

Mohler,  Kathrin J.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Ludwig-Maximilians-Universität München;

/persons/resource/persons138038

Vasileiadis,  Thomas
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons39255

Waldecker,  Lutz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Applied Physics, Stanford University;

/persons/resource/persons60409

Baum,  Peter
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Ludwig-Maximilians-Universität München;
Fachbereich Physik, Universität Konstanz;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

5704.pdf
(Publisher version), 870KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ehberger, D., Mohler, K. J., Vasileiadis, T., Ernstorfer, R., Waldecker, L., & Baum, P. (2019). Terahertz Compression of Electron Pulses at a Planar Mirror Membrane. Physical Review Applied, 11(2): 024034. doi:10.1103/PhysRevApplied.11.024034.


Cite as: https://hdl.handle.net/21.11116/0000-0003-49C4-E
Abstract
Compression of electron pulses with terahertz radiation offers short pulse durations and intrinsic subcycle stability in time. We report the generation of 12-fs (rms), 28-fs (FWHM) electron pulses at a kinetic energy of 75 keV by using single-cycle terahertz radiation and a simple planar mirror. The mirror interface provides transverse velocity matching and spatially uniform compression in time with purely longitudinal field-electron interaction. The measured short-term and long-term temporal drifts are substantially below the pulse duration without any active synchronization. A simple phase-space model explains the measured temporal focusing dynamics for different compressor strengths and shows a path toward generating isolated attosecond electron pulses from beams of almost arbitrary transverse emittance.