Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Neuronal correlates of motion-defined shape perception in primate dorsal and ventral streams


Handa,  Takashi
Department of Behavior and Brain Organization, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Handa, T., & Mikami, A. (2018). Neuronal correlates of motion-defined shape perception in primate dorsal and ventral streams. European journal of Neuroscience, 48(10), 3171-3185. doi:10.1111/ejn.14121.

Cite as: http://hdl.handle.net/21.11116/0000-0003-4AFD-E
Human and non-human primates can readily perceive the shape of objects using visual motion. Classically, shape, and motion are considered to be separately processed via ventral and dorsal cortical pathways, respectively. However, many lines of anatomical and physiological evidence have indicated that these two pathways are likely to be interconnected at some stage. For motion-defined shape perception, these two pathways should interact with each other because the ventral pathway must utilize motion, which the dorsal pathway processes, to extract shape signal. However, it is unknown how interactions between cortical pathways are involved in neural mechanisms underlying motion-defined shape perception. We review evidence from psychophysical, lesion, neuroimaging and physiological research on motion-defined shape perception and then discuss the effects of behavioral demands on neural activity in ventral and dorsal cortical areas. Further, we discuss functions of two candidate sets of levels: early and higher-order cortical areas. The extrastriate area V4 and middle temporal (MT) area, which are reciprocally connected, at the early level are plausible areas for extracting the shape and/or constituent parts of shape from motion cues because neural dynamics are different from those during luminance-defined shape perception. On the other hand, among other higher-order visual areas, the anterior superior temporal sulcus likely contributes to the processing of cue-invariant shape recognition rather than cue-dependent shape processing. We suggest that sharing information about motion and shape between the early visual areas in the dorsal and ventral pathways is dependent on visual cues and behavioral requirements, indicating the interplay between the pathways.