Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Spatio-temporal covariance model for medical images sequences: Application to functional MRI data

MPG-Autoren
/persons/resource/persons19800

Kruggel,  Frithjof J.
MPI of Cognitive Neuroscience (Leipzig, -2003), The Prior Institutes, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benali, H., Pelegrini-Issac, M., & Kruggel, F. J. (2001). Spatio-temporal covariance model for medical images sequences: Application to functional MRI data. In M. F. Insana (Ed.), Information Processing in Medical Imaging (pp. 197-203). Berlin: Springer. doi:10.1007/3-540-45729-1_20.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-4C52-C
Zusammenfassung
Spatial and temporal correlations which affect the signal measured in functional MRI (fMRI) are usually not considered simultaneously (i.e., as non-independent random processes) in statistical methods dedicated to detecting cerebral activation.We propose a new method for modeling the covariance of a stationary spatio-temporal random process and apply this approach to fMRI data analysis. For doing so, we introduce a multivariate regression model which takes simultaneously the spatial and temporal correlations into account. We show that an experimental variogram of the regression error process can be fitted to a valid nonseparable spatio-temporal covariance model. This yields a more robust estimation of the intrinsic spatio-temporal covariance of the error process and allows a better modeling of the properties of the random fluctuations affecting the hemodynamic signal. The practical relevance of our model is illustrated using real event-related fMRI experiments.