Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spatial microanalysis of natural 13C/12C abundance in environmental samples using laser ablation-isotope ratio mass spectrometry

MPG-Autoren
/persons/resource/persons62345

Brand,  Willi A.
Service Facility Stable Isotope, Dr. H. Moossen, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC3046.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)

BGC3046s1.pdf
(Ergänzendes Material), 566KB

Zitation

Rodionov, A., Lehndorff, E., Stremtan, C. C., Brand, W. A., Königshoven, H.-P., & Amelung, W. (2019). Spatial microanalysis of natural 13C/12C abundance in environmental samples using laser ablation-isotope ratio mass spectrometry. Analytical Chemistry, 91(9), 6225-6232. doi:10.1021/acs.analchem.9b00892.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-4EB8-7
Zusammenfassung
The stable 13C/12C isotope composition usually varies among different organic materials due to isotope fractionation during biochemical synthesis and degradation processes. Here we introduce a novel laser-ablation stable isotope-mass-spectrometry methodology (LA-IRMS) that allows highly resolved spatial analysis of carbon isotope signatures in solid samples down to a spatial resolution of 10 µm. The presented instrumental setup includes in-house-designed exchangeable ablation cells (3.8 and 0.4 mL, respectively) and an improved sample gas transfer, which allow accurate δ13C measurements of an acryl plate standard down to 0.6 and 0.4 ng of ablated carbon, respectively (standard deviation 0.25‰). Initial testing on plant and soil samples confirmed that microheterogeneity of their natural 13C/12C abundance can now be mapped at a spatial resolution down to 10 µm. The respective δ13C values in soils with C3/C4 crop sequence history varied by up to 14‰ across a distance of less than 100 µm in soil aggregates, while being partly sorted along rhizosphere gradients of < 300 µm from Miscanthus plant roots into the surrounding soil. These very first demonstrations point to the appearance of very small metabolic hotspots originating from different natural isotope discrimination processes, now traceable via LA-IRMS.