English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic ridge flank

MPS-Authors
/persons/resource/persons210334

Dittmar,  Thorsten
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Reese, B. K., Zinke, L. A., Sobol, M. S., LaRowe, D. E., Orcutt, B. N., Zhang, X., et al. (2018). Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic ridge flank. Geomicrobiology Journal.


Cite as: http://hdl.handle.net/21.11116/0000-0003-B7C3-2
Abstract
Microbial ecology within oligotrophic marine sediment is poorly understood, yet is critical for understanding geochemical cycles. Here, 16S rRNA sequences from RNA and DNA inform the structure of active and total microbial communities in oligotrophic sediment on the western flank of the Mid-Atlantic Ridge. Sequences identified as Bacillariophyta chloroplast were detected within DNA, but undetectable within RNA, suggesting preservation in 5.6-million-year-old sediment. Statistical analysis revealed that RNA-based microbial populations correlated significantly with nitrogen concentrations, whereas DNA-based populations did not correspond to measured geochemical analytes. Bioenergetic calculations determined which metabolisms could yield energy in situ, and found that denitrification, nitrification, and nitrogen fixation were all favorable. A metagenome was produced from one sample, and included genes mediating nitrogen redox processes. Nitrogen respiration by active bacteria is an important metabolic strategy in North Pond sediments, and could be widespread in the oligotrophic sedimentary biosphere.