Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optogenetic precision toolkit to reveal form, function and connectivity of single neurons

MPG-Autoren
/persons/resource/persons208422

Förster,  Dominique
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons232651

Kramer,  Anna
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39224

Baier,  Herwig
Department: Genes-Circuits-Behavior / Baier, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Förster, D., Kramer, A., Baier, H., & Kubo, F. (2018). Optogenetic precision toolkit to reveal form, function and connectivity of single neurons. Methods, 150, 42-48. doi:10.1016/j.ymeth.2018.08.012.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-6F49-0
Zusammenfassung
All-optical methods enable the control and monitoring of neuronal activity with minimal perturbation of the system. Although imaging and optogenetic manipulations can be performed at cellular resolution, the morphology of single cells in a dense neuronal population has often remained unresolvable. Here we describe in detail two recently established optogenetic protocols for systematic description of function and morphology of single neurons in zebrafish. First, the Optobow toolbox allows unbiased mapping of excitatory functional connectivity. Second, the FuGIMA technique enables selective labeling and anatomical tracing of neurons that are responsive to a given sensory stimulus or correlated with a specific behavior. Both strategies can be genetically targeted to a neuronal population of choice using the Gal4/UAS system. As these in vivo approaches are noninvasive, we envision useful applications for the study of neuronal structure, function and connectivity during development and behavior.