English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Large magnetoresistance effects in Fe3O4

MPS-Authors
/persons/resource/persons135233

Liu,  X. H.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126565

Chang,  C. F.
Chun-Fu Chang, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  L. H.
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126701

Komarek,  A. C.
Alexander Komarek, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126910

Wirth,  S.
Steffen Wirth, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, X. H., Chang, C. F., Tjeng, L. H., Komarek, A. C., & Wirth, S. (2019). Large magnetoresistance effects in Fe3O4. Journal of Physics: Condensed Matter, 31(22): 225803, pp. 1-7. doi:10.1088/1361-648X/ab0cf4.


Cite as: https://hdl.handle.net/21.11116/0000-0003-6396-4
Abstract
We investigated the magnetoresistance (MR) of a single crystal of magnetite, Fe3O4. In an effort to distinguish between different contributions to the MR the samples were prepared in two different initial magnetic states, i.e. by either zero-field or by field cooling from room temperature. The different magnetic structures in this sample have a dramatic effect on the magnetoresistance: for initially zero-field-cooled conditions a negative MR of about -20% is observed just below the Verwey transition at T-V approximate to 124 K. For decreasing temperature the MR increases, changes sign at similar to 78 K and reaches a record positive value of similar to 45% at around 50 K. This behavior is completely absent in the field-cooled sample. Magnetization measurements corroborate an alignment of the easy magnetization direction in applied magnetic fields below T-V as a cause of the strong effects observed in both, magnetization and MR. Our results point to a complex interplay of structural and magnetocrystalline effects taking place upon cooling Fe3O4 through T-V.