Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Complete waveform model for compact binaries on eccentric orbits

MPG-Autoren
/persons/resource/persons213835

Pfeiffer,  Harald P.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4299

Szilagyi,  Bela
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1609.05933.pdf
(Preprint), 10MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huerta, E. A., Kumar, P., Agarwal, B., George, D., Schive, H.-Y., Pfeiffer, H. P., et al. (2017). Complete waveform model for compact binaries on eccentric orbits. Physical Review D, 95: 024038. doi:10.1103/PhysRevD.95.024038.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-6527-0
Zusammenfassung
We present a time domain waveform model that describes the
inspiral-merger-ringdown (IMR) of compact binary systems whose components are
non-spinning, and which evolve on orbits with low to moderate eccentricity. The
inspiral evolution is described using third order post-Newtonian equations both
for the equations of motion of the binary, and its far-zone radiation field.
This latter component also includes instantaneous, tails and tails-of-tails
contributions, and a contribution due to non-linear memory. This framework
reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian
order in the zero eccentricity limit. To improve phase accuracy, we incorporate
higher-order post-Newtonian corrections for the energy flux of quasi-circular
binaries and gravitational self-force corrections to the binding energy of
compact binaries. This enhanced inspiral evolution prescription is combined
with an analytical prescription for the merger-ringdown evolution using a
catalog of numerical relativity simulations. This IMR waveform model reproduces
effective-one-body waveforms for systems with mass-ratios between 1 to 15 in
the zero eccentricity limit. Using a set of eccentric numerical relativity
simulations, not used during calibration, we show that our eccentric model
accurately reproduces the features of eccentric compact binary coalescence
throughout the merger. Using this model we show that the gravitational wave
transients GW150914 and GW151226 can be effectively recovered with template
banks of quasi-circular, spin-aligned waveforms if the eccentricity $e_0$ of
these systems when they enter the aLIGO band at a gravitational wave frequency
of 14 Hz satisfies $e_0^{\rm GW150914}\leq0.15$ and $e_0^{\rm
GW151226}\leq0.1$.