English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Neutrality in the metaorganism

MPS-Authors
/persons/resource/persons200284

Sieber,  Michael
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons222577

Dirksen,  Philipp
Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56580

Baines,  John F.
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons222033

Schulenburg,  Hinrich
Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource

Link
(Preprint)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

367243.full.pdf
(Preprint), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sieber, M., Pita, L., Weiland-Bräuer, N., Dirksen, P., Wang, J., Mortzfeld, B., et al. (2019). Neutrality in the metaorganism. bioRxiv. doi:10.1101/367243.


Cite as: https://hdl.handle.net/21.11116/0000-0003-706F-3
Abstract
Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and which are therefore interesting candidates for further study. Moreover, using simulated communities we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.