English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models

MPS-Authors
/persons/resource/persons232718

Neitz,  A.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons218057

Parascandolo,  G.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons232721

Bauer,  S.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Neitz, A., Parascandolo, G., Bauer, S., & Schölkopf, B. (2019). Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 31 (pp. 9816-9826). Red Hook, NY: Curran Associates, Inc. Retrieved from https://papers.nips.cc/paper/8188-adaptive-skip-intervals-temporal-abstraction-for-recurrent-dynamical-models.


Cite as: http://hdl.handle.net/21.11116/0000-0003-8037-E
Abstract
There is no abstract available