English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sauerstoffentwicklungsreaktion an Kohlenstoffkanten: Aktivitätsentwicklungund Struktur-Eigenschafts-Beziehungen, untersucht anhand polyzyklischer aromatischer Kohlenwasserstoffe

MPS-Authors
/persons/resource/persons22071

Schlögl,  Robert
Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion , Stiftstr. 34 - 36 45470 Mülheim an der Ruhr, Germany;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

Lin_et_al-2019-Angewandte_Chemie.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lin, Y., Lu, Q., Song, F., Yu, L., Mechler, A. K., Schlögl, R., et al. (2019). Sauerstoffentwicklungsreaktion an Kohlenstoffkanten: Aktivitätsentwicklungund Struktur-Eigenschafts-Beziehungen, untersucht anhand polyzyklischer aromatischer Kohlenwasserstoffe. Angewandte Chemie, 131(26), 9010-9014. doi:10.1002/ange.201902884.


Cite as: http://hdl.handle.net/21.11116/0000-0003-758E-A
Abstract
The abundant surface chemical information and edge structures of carbon materials have attracted tremendous interest in catalysis. For the oxygen evolution reaction (OER), edge effects of carbon materials have been rarely studied in detail due to the complexity of various coexisting edge configurations and the controversy between carbon corrosion and carbon catalysis. In the present work, the exact roles of common carbon active edge sites in OER using polycyclic aromatic hydrocarbons (PAHs) with designated configurations (zigzag and armchair) as model probe molecules were interrogated with the focus on structure‐function relationships. Zigzag configurations of PAHs were determined to show high activity for OER while also showing a remarkable stability at a reasonable potential. It performs with a TOF value of 0.276 s‐1 in 0.1 M KOH. The catalytic activity of carbon edge sites could be further effectively regulated by extending their π conjugation structure at a molecular level.