English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning

MPS-Authors
/persons/resource/persons211270

Burgess,  J. M.
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ishida, E. E. O., Beck, R., González-Gaitán, S., de Souza, R. S., Krone-Martins, A., Barrett, J. W., et al. (2018). Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning. Monthly Notices of the Royal Astronomical Society, 483(1), 2-18. doi:10.1093/mnras/sty3015.


Cite as: http://hdl.handle.net/21.11116/0000-0003-731F-A
Abstract
There is no abstract available