English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Grassland production in response to changes in biological metrics over the Tibetan Plateau

MPS-Authors
/persons/resource/persons214279

Ma,  Xuanlong
Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jin, J., Ma, X., Chen, H., Wang, H., Kang, X., Wang, X., et al. (2019). Grassland production in response to changes in biological metrics over the Tibetan Plateau. Science of the Total Environment, 666, 641-651. doi:10.1016/j.scitotenv.2019.02.293.


Cite as: https://hdl.handle.net/21.11116/0000-0003-79BA-4
Abstract
A clear interannual variability in annual production of grasslands (termed AEVI) has been reported over the Tibetan Plateau (TP), but the underlying mechanism has not been fully understood. Here, we explained the interannual variability of AEVI during 2001-2015 by two phenological metrics (the start and end of the growing season, termed SOS and EOS, respectively) and one physiological metric (the maximum capacity of canopy light absorbance, termed MEVI) using MODIS Enhanced Vegetation Index (EVI) data over the TP. The results showed that the interannual variability of AEVI can be well attributed to not only the trends of, but also the sensitivities of AEVI to, the selected biological metrics. On the one hand, the advancing SOS and delaying EOS dominated the study area while both increased and decreased MEVI were observed. On the other hand, the AEVI responded negatively to the SOS and positively to the EOS and MEVI, exhibiting significant variations along the temperature and precipitation gradients. Hence, the current interannual variability of SOS and EOS mainly increased the AEVI; meanwhile, both enhancement and suppression of the interannual variability of MEVI to the AEVI were widespread over the TP. Overall, the interannual variability of MEVI mostly contributed to that of the AEVI, indicating a dominant role of the physiological metric rather than phenological metrics in carbon gain of TP grasslands. The achievements of this study are helpful to understand the underlying biological causes of the interannual variability of grassland production over the TP.