English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Opposite Anisotropic Piezoresistive Effect of ReS2

MPS-Authors
/persons/resource/persons136448

Yang,  Lei
Atomistic Modelling, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

An, C., Xu, Z., Shen, W., Zhang, R., Sun, Z., Tang, S., et al. (2019). The Opposite Anisotropic Piezoresistive Effect of ReS2. ACS Nano, 13(3), 3310-3319. doi:10.1021/acsnano.8b09161.


Cite as: https://hdl.handle.net/21.11116/0000-0008-2CEE-C
Abstract
Mechanical strain induced changes in the electronic properties of two-dimensional (2D) materials is of great interest for both fundamental studies and practical applications. The anisotropic 2D materials may further exhibit different electronic changes when the strain is applied along different crystalline axes. The resulting anisotropic piezoresistive phenomenon not only reveals distinct lattice-electron interaction along different principle axes in low-dimensional materials but also can accurately sense/recognize multidimensional strain signals for the development of strain sensors, electronic skin, human-machine interfaces, etc. In this work, we systematically studied the piezoresistive effect of an anisotropic 2D material of rhenium disulfide (ReS 2 ), which has large anisotropic ratio. The measurement of ReS 2 piezoresistance was experimentally performed on the devices fabricated on a flexible substrate with electrical channels made along the two principle axes, which were identified noninvasively by the reflectance difference microscopy developed in our lab. The result indicated that ReS 2 had completely opposite (positive and negative) piezoresistance along two principle axes, which differed from any previously reported anisotropic piezoresistive effect in other 2D materials. We attributed the opposite anisotropic piezoresistive effect of ReS 2 to the strain-induced broadening and narrowing of the bandgap along two principle axes, respectively, which was demonstrated by both reflectance difference spectroscopy and theoretical calculations. © 2019 American Chemical Society.