Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stress-dependent elasticity of TiAlN coatings

MPG-Autoren
/persons/resource/persons137975

Völker,  Bernhard
Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Materials Chemistry, RWTH Aachen University, Aachen, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

coatings-09-00024-v2.pdf
(Verlagsversion), 9MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hans, M., Patterer, L., Mušić, D., Holzapfel, D. M., Evertz, S., Schnabel, V., et al. (2019). Stress-dependent elasticity of TiAlN coatings. Coatings, 9(1): 24. doi:10.3390/coatings9010024.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-2B5B-3
Zusammenfassung
We investigate the effect of continuous vs. periodically interrupted plasma exposure during cathodic arc evaporation on the elastic modulus as well as the residual stress state of metastable cubic TiAlN coatings. Nanoindentation reveals that the elastic modulus of TiAlN grown at floating potential with continuous plasma exposure is 7-11 larger than for coatings grown with periodically interrupted plasma exposure due to substrate rotation. In combination with X-ray stress analysis, it is evident that the elastic modulus is governed by the residual stress state. The experimental dependence of the elastic modulus on the stress state is in excellent agreement with ab initio predictions. The macroparticle surface coverage exhibits a strong angular dependence as both density and size of incorporated macroparticles are significantly lower during continuous plasma exposure. Scanning transmission electron microscopy in combination with energy dispersive X-ray spectroscopy reveals the formation of underdense boundary regions between the matrix and TiN-rich macroparticles. The estimated porosity is on the order of 1 and a porosity-induced elastic modulus reduction of 5-9 may be expected based on effective medium theory. It appears reasonable to assume that these underdense boundary regions enable stress relaxation causing the experimentally determined reduction in elastic modulus as the population of macroparticles is increased. © 2018 by the authors.